
1

AUTOMATING YOUR
TEST SUITE
INCREMENTALLY
EATING THE ELEPHANT

2

WE’VE BUILT SOME
GREAT STUFF!

• We’re building more!

• Let’s automate the tests!

SPECIALIZED TOOLS, SKILLS,
DECISIONS, ENVIRONMENTS

…and quality suffers in the meantime...

3

ISOLATED, SPECIALIZED
TEAM

DRIFTING APART…

4

BIG BANG!

UNKNOWNS, CONFUSION

5

FAILURE…ROT

ABANDONMENT…LOST
INVESTMENT

6

A (TYPICAL?) STORY: SUMMARY
1. Quality suffers while waiting for the specialized tools /

workers / skills / training / decisions / environments of test
automation

2. Automation built out by a separate, isolated, highly-
specialized team

3. New development continues simultaneously, so automation
target and current state of product drift apart

4. Automated tests arrive in a “big bang” rollout, many are not
valid or passing because of the drift

5. Specialized team/consultants roll off, remaining developers
don’t know and struggle to maintain the automated suite

6. More and more tests drift and fail, failures ignored, test suite
rots

7. Suite abandoned, investment lost

WHAT’S WRONG HERE?

Where is this story at odds with your
understanding of agile principles,
professional effectiveness, common
sense?

7

AT ODDS WITH PRINCIPLES

Quality suffers while
waiting for
specialized tools /
workers / skills /
training / decisions /
environments

Lack of self-
organization – to
figure out *how*, to
solve their own
problems

8

AT ODDS WITH PRINCIPLES

Automation built out
by a separate,
isolated, highly-
specialized team

Over-specialization
and siloing, instead of
cross-functional
teamwork

AT ODDS WITH PRINCIPLES

New development
continues
simultaneously, so
automation target
and current state of
product drift apart

Lack of integration
and a truly shippable
product throughout

9

AT ODDS WITH PRINCIPLES

Automated tests
arrive in a “big bang”
rollout, many are not
valid or passing
because of the drift

Huge batch, waterfall-
like big bang release,
instead of incremental
delivery focused on
high-value things
first

AT ODDS WITH PRINCIPLES

Specialized
team/consultants roll
off, remaining
developers don’t
know and struggle to
maintain the
automated suite

Lack of collective
ownership

10

AT ODDS WITH PRINCIPLES

More and more tests
drift and fail, failures
ignored, test suite
rots

Lacking consistent
dedication and
ownership of quality

AT ODDS WITH PRINCIPLES

Suite abandoned,
investment lost

Disposable
commodities, instead
of vision with focus on
value (including high
ROI, low TCO)

11

BUT WE WANT THE
AGILE STUFFS

12

SO, OUR APPROACHES AND
SOLUTIONS SHOULD…
• Promote self-organization – teams figuring out *how* to do

their work and solve their own problems

• Promote cross-functional teamwork, avoiding over-
specialization and siloing

• Integrate automated tests into the development workflow
immediately, and continually have a shippable product

• Work in small batches, incrementally deliver, avoiding big
bang drops

• Promote collective ownership, cross-training, and
information sharing

• Reflect dedication to and ownership of quality

• Build long-term investments per a vision, ROI, low-TCO

13

SO LET’S TALK SOLUTIONS
OR: How I learned to stop worrying and love the requisite
“agenda slide”

• People and Attitude: Everyone Owns Quality

• Remembering the Primary Goal: Done, High-Quality,
Potentially Shippable Product

• Start Early

• Build Quality in to New Development, Every Sprint

• Attack Existing Debt Incrementally

• Keep it Healthy

14

GARY PEDRETTI
• Over 20 years in the software industry with highly cross-

functional experience – DBA, Developer, BA, Tester (with
automation experience), Application Architect

• Currently Trainer, Coach, Consultant, Owner at Sodoto
Solutions

• SODOTO = See One, Do One, Teach One

• Scrum: Development Team member, Scrum Master, Coach,
Professional Scrum Trainer for Scrum.org

• http://blog.GaryPedretti.com/

• http://www.linkedin.com/in/garypedretti

• Twitter: @GaryPedretti

PEOPLE AND ATTITUDE:
EVERYONE OWNS QUALITY

15

PEOPLE AND ATTITUDE:
EVERYONE OWNS QUALITY
But what is quality?

American Society for Quality:

• "A combination of quantitative and qualitative
perspectives…

• …for which each person has his or her own definition…”

QUALITY
• Quality != Testing

• Verification – building it right

• Validation – building the right thing
• Value…"Quality in a product or service is not what the

supplier puts in. It is what the customer gets out and is
willing to pay for.” – Peter Drucker

• Fitness for Purpose
• What the customer would love but has not yet thought

about (Steve Jobs, Kano’s “Attractive Quality”)
• The result of care (Robert Pirsig, Software Craftsmanship)

• Quality NOT just lack of bugs…"Number of defects per
million opportunities” (Six Sigma)

16

SO…

• …everyone tests?

• …no specialists then?

• Ownership…

Once we…

• Agree on a tool

• Get a performance environment

• Have some experts (catch up and)
automate the regression test suite

• Get some training

Frustration
Helplessness

17

OWNERSHIP &
ACCOUNTABILITY

• No excuses, no “someone else’s problem”, no “when we
have X, then…”, no magical thinking

• But more importantly: autonomy, teamwork, and
empowerment to solve one’s own problems

THE FIRST LAW OF
TEST AUTOMATION
is...

Lack of automation
!=

Lack of accountability for quality

18

OWNERSHIP, ACCOUNTABILITY

• What would happen if everyone had to test?

• …and running the regression test suite took 5 days?

• Automation = Code?

• Who’s good at writing code?

REVIEW – PEOPLE AND
ATTITUDE: EVERYONE OWNS
QUALITY

• Quality != Testing – quality has many aspects and requires
many specialties

• Ownership = no magical thinking…but also autonomy and
empowerment

• Lack of automation != lack of accountability for quality

19

REMEMBER THE PRIMARY
GOAL: DONE, HIGH-
QUALITY, POTENTIALLY
SHIPPABLE PRODUCT

REMEMBER THE PRIMARY GOAL

Have you ever said something like…

• It’s done but it’s not tested

• It’s code complete

• It’s done but not performance tested

• It’s done…but DON’T ship it yet

• It’s 80% done

• It’s done but not Done Done

• If so, what was the next question you heard?

20

DONE, HIGH-QUALITY, POTENTIALLY
SHIPPABLE PRODUCT

• Stakeholders have been telling us exactly what they
value…when will we choose to listen?

• Scrum and other Agile frameworks’ obsession with
potentially shippable increments is not arbitrary

• It’s alignment with what stakeholders always wanted
anyway – it’s business- and value-driven

• It’s a core of “agility” – the ability to change direction
without leaving investment but unrealized value
(inventory) on the table

DONE, HIGH-QUALITY, POTENTIALLY
SHIPPABLE PRODUCT

This is just basics, right? Why the emphasis?

It’s important we have agreement here, because we often see
this core concept shunned when the going gets tough…

21

Code

Test

Code

Test

Code

Sprint

Sprint

Test Code

…

22

Code & Test

Regression
Test

Code & Test

Regression
Test

Code & Test

Sprint

Sprint

Test (including Regression) Code

…

23

Code & Test

Performance
Test

Code & Test

Performance
Test

Code & Test

Sprint

Sprint

Test (including Performance) Code

…

24

TOUGH PROBLEMS
This may be hard –

we might not have this right now,

it might be a long road to get there from here

(more on this in a bit)

– but that still doesn’t change the ideal, and shouldn’t stop
us from listening to and moving towards what stakeholders
actually want

25

REVIEW – THE PRIMARY GOAL
• Stakeholders – not Agile zealots in white robes – have

always wanted shippable software, and only shippable
software

• Yes, of course shippable software happens by including
regression testing, performance testing, security testing,
etc. – so if you’re delivering incrementally, we’re talking
about doing this in EVERY cycle

• Getting there might be hard, but practical difficulty doesn’t
change the ideals, the desires of the stakeholders, or
professional responsibility to deliver what stakeholders
want

START EARLY

26

START EARLY

Avoid the shunning of responsibility and accountability –
avoid the magical thinking

If test automation is good, then ”Just Do It”

START EARLY
• OK, but what about our Test Automation Team?

• What about our current lack of skills in this area?

• Especially if you put these two together…cross-functional
teams with people willing to be generalizing specialists,
cross-training, etc…is a big part of your answer

• Regardless, you’re still responsible for solving your own
problems, so if test automation is good, then…

27

START EARLY
• OK, but what about lack of environments, toolsets, build

server integration, etc.?

• What if you started performance testing without a
performance testing environment? Amateur hour, right?
• A trend is a trend is a trend…even on your local machine
• It doesn’t mean we won’t eventually test in Mega

Performance Environment 5000™

THE SECOND LAW OF
TEST AUTOMATION
is...

Automation
!=

Use of Specialized Tools

28

START EARLY
• OK, but what about lack of environments, toolsets, build

server integration, etc.?

• Low-hanging fruit rarely require any “automated testing
tools” (Selenium, CodedUI, QTP, Cucumber, Fit, etc.)
• DB scripts to reproduce manual test data setup
• Scripts to sample and scrub data from production
• Blasting a server with hundreds of headless agents…who

do we have on our team again? Building agents to hit
REST services daily?...

REVIEW – START EARLY
• Whatever specialized knowledge you have in this area,

putting that in the context of cross-functional teams will
result in cross-training

• There’s no need to wait for an environment, toolset, etc. –
a trend is a trend is a trend, regardless of the environment

• People often confuse automation with the use of
specialized test automation tools, but there is low-hanging
fruit that has nothing to do with those

29

BUILD QUALITY IN TO NEW
DEVELOPMENT, EVERY
SPRINT

BUILD QUALITY IN TO NEW
DEVELOPMENT, EVERY SPRINT

We BUILD quality in!!!

Quality is JOB #1 !!!!

But what are some actual, practical mechanisms to do this?

30

THINK: TEST DRIVEN
• Not just what you traditionally associate with TDD (not just

unit tests)
• You might be familiar with this basic sequence:

• Thinking about testing starts with Backlog Refinement
(Grooming) (or Requirements Gathering phase)

• Use Acceptance Criteria (Requirements) to frame out
Acceptance Tests, during Sprint Planning (or otherwise the
beginning of your cycle)

• Use Acceptance Criteria to frame out Unit Tests, where
appropriate

• All tests grow and adapt during the Sprint (or whatever you
call your cycle) as implementation fills in

• Testing specialists and coding specialists work together
throughout the Sprint, sharing activities and ideas

THINK: TEST DRIVEN
• The problem is…these two steps are vague, rarely

implemented, confusing(?):

• All tests grow and adapt during the Sprint (cycle) as
implementation fills in

• Testing specialists and coding specialists work together
throughout the Sprint (cycle), sharing activities and ideas

31

TESTS GROW AND ADAPT
DURING THE SPRINT
• The BDD world went through a big debate about

Declarative vs. Imperative style tests

• Declarative (informative) example:
• Scenario: Submit the form with correct data
Given I am on the personal data form
When I submit the form with correct data
Then I should see the correct message

TESTS GROW AND ADAPT
DURING THE SPRINT
• Imperative (communicative) example:

• Scenario: Submit the form with correct data (imperative)
Given I am on the personal data page
When I set "What is your name?" to "Alister"

And I set "What is your story?" to "I like ruby"
And I set "What testing tool do you like?" to "Watir"
And I click "Submit"

Then I should see the message "Thanks! Your response has
been recorded."

32

TESTS GROW AND ADAPT
DURING THE SPRINT
• Like most endless debates, the question is usually wrong

• It’s not, “Which one rules them all?”
• It’s, “When should I use which one?” – it’s about context

• Grow and adapt during the Sprint
• The tests will initially be higher-level and more Declarative
• As implementation is filled in, those same tests will get

lower-level, more detailed, and more Imperative

TESTING SPECIALISTS AND CODING
SPECIALISTS WORK TOGETHER
THROUGHOUT THE SPRINT

• Coding specialists are often sharing their output with
testers (e.g., via pairing up, via a deploy to a QA
environment)

• But are your testing specialists sharing their output and
activities with coders?

• The Declarative -> Imperative transformation will involve a
lot of communication between these specialties, and
between the entire team

33

THE TEST AUTOMATION
PYRAMID

Ideas	from	Mike	Cohn’s	Succeeding	With	Agile,	graphic	from	http://martinfowler.com/bliki/TestPyramid.html		

THAT’S NICE, BUT…

We have functional / manual / non-coding QA specialists on
our team…

• The UI tests they write re-test stuff that’s already been
tested in the unit and service/integration layers

• How would they know what’s covered in the unit tests and
the automated service/integration tests?

34

THAT’S NICE, BUT…

How will non-coding testing specialists know?
• Well, put them on a team with coders and have them TALK

TO EACH OTHER (gasp!)
• Coders should write meaningful, descriptive, and accurate

test names
• These can then be seen and understood outside of the

code, e.g. in a build report
• DivideByZeroShouldThrowCustomException
• DivideNegativeByNegativeShouldEqualANegative
• Oooops, I mean

DivideNegativeByNegativeShouldEqualAPostive

THAT’S NICE, BUT…

This is another mechanism for “Testers and Coders work
together continuously throughout the Sprint (cycle)”

This one is a little less personal than a face-to-face
conversation

But it helps you realize all of your artifacts are transparent
communication, maybe just at different levels of fidelity

35

THINK: TEST DRIVEN

Another thing to build quality in – take a disciplined
approach to bug fixes and new features in the same way:

• Write covering tests first, if they don’t exist
• If fixing a bug, you’re reproducing it reliably here

• Only then write modifications

OK, BUT…

What does this have to do with test automation and our
problems again?

• Avoiding the big bang by building and using continuously

• Replacing the team of specialists with good cross-
functional team behavior and communication

36

AUTOMATION INVESTMENTS
• Automation, like any activity you expect to derive value

from, is an investment

• Specifically, investing time to enhance quality

RECORD / PLAYBACK:
A JOKE, RIGHT?

“Record-playback tools are almost always a bad idea for any

kind of automation, since they resist changeability and

obstruct useful abstractions. They are only worth having as a

tool to generate fragments of scripts which you can then edit

as a proper programming language, in the manner of Twist or

Emacs.”

– Martin Fowler

37

RECORD / PLAYBACK:
A JOKE, RIGHT?
• Results in brittle tests

• Results in ugly, unmaintainable code

• AKA, Amateur Hour

• But, investment is incredibly low

HAND-CODED AUTOMATED
TESTS: TOTALLY PRO
• Helps you introduce abstractions to help with brittleness

• Complete control – whatever you want to do,
parameterize, etc.

• Maintainable code (if you choose to write it that way)

• But, investment is (usually, incredibly) high

38

RECORD/PLAYBACK
VS. HAND CODING
• Let’s have a debate!

• NO

• Again, it’s not WHICH, it’s WHEN. What’s the Context?

• Wouldn’t it be great if we could keep the investment low
when things are volatile, and increase the investment as
things stabilize?

RECORD/PLAYBACK VS. HAND
CODING
• Record/Playback is low investment early in the Sprint, but it still

often has value:

• Understanding how to really test this feature

• Discovering which pieces / controls are most brittle and volatile

• Still allows for quick runs – and often eliminates the input of rote

data

• Regardless, because this is low investment, you should have no

problem throwing it away!

• But sure, if you’re invested in test automation in general, you’ll
probably want your long-term investment to be less brittle, more

flexible, more maintainable – so you’ll move towards hand-
coding

39

REVIEW – BUILD QUALITY IN TO NEW
DEVELOPMENT, EVERY SPRINT
• Test drive everything – it’s not just what you traditionally

associate with TDD
• If fixing a bug, you’re reproducing it reliably here

• Grow and adapt tests during the Sprint – Declarative to
Imperative

• Leverage the Testing Pyramid test type ratios, including
communication between coders and testers to avoid
duplicate effort

• Test automation is an investment

• Grow and adapt automation during the Sprint

• Record/playback automagic to hand coded
• An increasingly abstracted / robust hand coded test

ATTACK THE DEBT
INCREMENTALLY

40

ATTACK THE DEBT
INCREMENTALLY

41

BUT WHICH PARTS
FIRST?
What are some dimensions we can use to figure this out?

• Look at usage stats
• Modern tools for this are wonderful!

• By (alleged) value – (historical) Backlog order

• Execution time for the manual version of the test

• Use what you already know about risk-based testing

CAN WE GET
SOMETHING FOR FREE?
• Michael Feathers described a concept called

Characterization Tests, also called Behavioral Regression
Testing
• Assume the existing, unknown system is currently doing

the right thing
• Feed it inputs
• Observe the results
• Put those inputs into a test, and the results into the

assertions of that same test

42

CAN WE GET
SOMETHING FOR FREE?
• Characterization Tests are really just black box testing,

with
• Assumptions that the system currently behaves correctly
• This does NOT introduce any new risk
• Use a bit random, but still intelligent, inputs

• Characterization Tests are well suited to automagic
generation tools
• Parameterized unit tests on boundaries, etc.
• Tools include

• MS Pex -> now IntelliTest
• Jtest
• AgitarOne

REUSE, REDUCE,
RECYCLE!
• Reuse functional tests for load and performance – these

tests exercise the system in a way the user would, right?

• Tools that could be used initially include
• Selenium Grid
• Jmeter Web Driver Sampler
• MS Load Testing (reuse Perf, CodedUI, and Unit tests)
• Headless perf test tools could run a test record while UI

tests running playback

43

AUTOMATE ALL THE
THINGS!
• So, when will we be completely done with this automation

stuff?

• The goal might not be total automation – think risk-based
testing, think about your investments

• It’s not an all-or-nothing proposition – are you getting the
most value for what *is* automated?

REVIEW – ATTACK THE DEBT
INCREMENTALLY
• Figure out what’s most important to attack first – prioritize

• Consider Characterization tests, which can easily be auto-
generated

• Reuse your tests wherever possible

• Stop when it’s no longer valuable

44

KEEP IT HEALTHY

KEEP IT HEALTHY
It’s just one little test failing, and we know why it fails…

It will succeed once Johnny implements feature X…

Or if you just run it again it will succeed…

Well, usually a third or fourth time will do it for sure!

45

NO TOLERANCE FOR
FAILING TESTS
• Failing tests, at whatever level, whatever stage of the

pipeline, are showstoppers
• We often see this one ignored when people first start

automating all of their tests
• Everyone knows to fix unit tests that fail in the first stage of

the build pipeline…
• …But if a test fails in later stages, regardless of whether

it’s an “acceptance test,” a “UI test,” etc. – this is a
showstopper for everyone too!

• All hands on deck!

NO TOLERANCE FOR
FAILING TESTS
• Tests are first class citizens

• Part of your codebase
• Current culmination of communication / consensus with

stakeholders and SMEs
• Your requirements – in the form of executable

specifications
• Documentation

• Avoid and eliminate ANYTHING that will cast doubts on
your test results – NO ROT ALLOWED

46

KEEP IT HEALTHY
But that’s just the technical stuff, the mechanics…

47

KEEP IT HEALTHY
The previous stuff was “just” the technical stuff, the mechanics…what
about “Individuals and Interactions over Processes and Tools”???

• Inspect and adapt your automation practices themselves

• I haven’t provided any magic bullets here, and no one can foresee
your exact problems

• WARNING: Inspection & Adaptation [NOT necessarily EQUAL TO]
Changing Values
• I don’t think the customer’s/stakeholder’s obsession with shippable,

working software is going to change any time soon, so valuing that
probably isn’t a good candidate for changing/adapting

THANK YOU!
QUESTIONS?

@GARYPEDRETTI

GARY@SODOTOSOLUTIONS.COM

48

IMAGE CREDITS
• BigBang.jpg - http://pics-about-space.com/big-bang-astronomy?p=2 -

https://0.s3.envato.com/files/65875929/Big%20Bang.jpg

• Confused.bmp - https://www.dietdoctor.com/why-calorie-counters-are-confused
• CreightonAbramsQuote.jpg - JarOfQuotes.com -

http://www.jarofquotes.com/img/quotes/a8feaff02721157187fda6036cd4dfd1.jpg

• DilbertAgile.gif - Scott Adams - http://dilbert.com/strip/2007-11-26
• DisgustingAnalogy.jpeg - Everett Downing - http://www.edowning.com/mojo-

animated/2014/6/24/one-bite-at-a-time

• DriftApart.jpg - http://quotesgram.com/friendship-drifting-apart-quotes/ -
http://media-cache-
ec0.pinimg.com/736x/7f/3a/7d/7f3a7da18b929f974c8fe1b1d3bab724.jpg

• eating-elephant-2.png - http://zubibaby.com/how-to-eat-an-elephant/

• Fail.png - https://elearningindustry.com/top-10-reasons-lms-implementation-fail -
https://elearningindustry.com/wp-content/uploads/2014/07/Top-10-Reasons-Why-
LMS-Implementation-Fail.png

• FirstLawOfHoles.jpg - MotivatedPhotos.com -
https://www.pinterest.com/pin/490822059365094257/ -
f9a694b5cf9b194bce474e8e8422a8ee.jpg

• howtoeatelephant.jpg - http://moneypowerwisdom.com/how-to-eat-an-elephant/ -
http://www.moneypowerwisdom.com/images/howtoeatelephant.jpg

• house.jpg - http://bizknowlogy.com/five-ways-to-solve-tough-problems/ -
http://bizknowlogy.com/wp-content/uploads/2013/12/House.jpg

IMAGE CREDITS, PART 2
• irony.gif - Despair, Inc. - https://despair.com/products/irony -

http://cdn.shopify.com/s/files/1/0535/6917/products/irony-shirt_grande.gif?v=1414445494

• keep-calm-and-abandon-ship-27.png - http://worldofdtcmarketing.com/biogens-ceo-
abandons-employees/as-i-see-it/attachment/keep-calm-and-abandon-ship-27/ -
http://worldofdtcmarketing.com/wp-content/uploads/2016/07/keep-calm-and-abandon-
ship-27.png

• LostInvestment.jpg - http://www.thisismoney.co.uk/money/investing/article-
2885464/Worst-2014-investments-UK-s-fund-lost-half-clients-savings.html -
http://i.dailymail.co.uk/i/pix/2014/12/23/2205952800000578-2885464-image-a-
41_1419366174079.jpg

• one_bite1.jpg - Sean Gallo, 2011 - https://seangallo.com/2011/02/22/how-to-eat-an-
elephant/

• Rotten-Apple.jpg - http://religiopoliticaltalk.com/wp-content/uploads/2014/04/Rotten-
Apple.jpg

• ShipCrash.jpg - ODN - On Demand News - YouTube video “Dramatic crash footage: Ferry
crashes onto shore in Turkey” - https://i.ytimg.com/vi/3cN78W8bTP0/maxresdefault.jpg

• single-responsibility1.png - https://blog.rescale.com/openclosed-and-the-single-
responsibility-principle/ - http://blog.rescale.com/wp-content/uploads/2015/01/single-
responsibility1.png

• Specialized_logo.png - Fair Use from Wikipedia -
https://en.wikipedia.org/wiki/File:Specialized_logo.svg

• Story.jpg - http://heartstonejourney.com/once-upon-a-time/

• WhichBiteFirst.png - Robin Cain - how-do-eat-an-elephant.png -
https://vanessaguthrie.wordpress.com/2014/03/08/how-do-you-eat-an-elephant-answer-
one-bite-at-a-time/

• Various Vince Vaughn/Unfinished Business stock photos - released for

non-commercial use by iStock

